

Sport Related Concussion:

A Comprehensive Rehabilitation Approach

Chariese A. Medlar, PT, DPT

Director Compliance & Quality Assurance UHS Physical Therapy & Rehabilitation

Objectives

- Gain awareness of sport related concussion
- Describe the systems that may be impacted
- Identify factors that may contribute to symptoms
- Gain knowledge of multi-system approach during examination and treatment
- Discuss "best practice" for treating this population

Concussion Epidemiology

Center for Disease Control (CDC)

- Approximately 1.4 million TBI's reported each year
 - 75-90% classified as mTBI
- Up to 3.8 million concussions occur in the sports and recreational activities annually
 - Not treated in ED or Hospital

80-85% of patients recover fairly quickly (1-2 weeks)

~15-20% - persistent signs and sx's lasting > 3 wks.

- Risk factors for prolonged recovery:
 - Younger age
 - Female gender
 - Prior concussion hx
 - Hx of learning disabilities or Migraine HA's

UHS Sport Related Concussion - SRC

Berlin Consensus Statement 2016

- TBI induced by biomechanical forces
- Presentation rapid onset of impairment in neurological function that resolves spontaneously
- May result in neuropathological changes
- Results in a range of clinical signs and symptoms

- Treatment guidelines are vague and inconsistent
- Science continues to evolve individual management and RTP decisions remain clinical judgement

Concussion Biomechanics

Stretching/tearing of neurons in brain and brain stem

Linear Forces

- Impact stops the heads forward motion
 - Brain hits front of skull, injuring frontal lobe
 - Brian recoils and hits back of skull, injuring occipital lobe

Concussion Finitial impact of concussion (coup) Secondary impact (contrecoup)

Rotational Forces

- Impact causes head to rotate with force
 - Rotates the brain on its axis

Rotational injury

<u>Pathophysiology</u>

Normal Neuron Function

- Signal arrives at neuron
- Travels down axon
- Neurotransmitters released and encode a message for the next cell

CDC Physicians Toolkit; Collins, Gioia et al 2006

<u>Pathophysiology</u>

Concussion

- Biomechanical forces trigger neuronal dysfunction
 - Axonal stretching and disruption of cell membranes

CDC Physicians Toolkit; Collins, Gioia et al 2006

Neurometabolic dysfunction

- Neurotransmitters released and flux of ions occurs through previously regulated channels
- The neuron releases Potassium (K+) and Calcium (Ca2+) ions enter the cell
- The Adenosine Triphosphate (ATP) dependent pump works overtime to restore ionic balance
- Causes significant increase in cerebral glucose metabolism
- During this phase cerebral blood flow (CBF) may not meet metabolic demand

Post Concussive Vulnerability

- "Risk of concussion appears to increase when the brain has suffered a prior concussive injury" (Giza & DiFiori, 2011)
 - Risk for repeat injury greatest within 10 days
 - Brain cells are vulnerable for undefined period of time
 - Takes less biomechanical force to cause re-injury
- Vagnozzi et al 2010
 - Neurochemical changes in the injured brain No c/o sx's, Normal imaging and examination
- Second Impact Syndrome
 - "a second brain injury that occurs before the symptoms of a prior injury have resolved"
 - Result in catastrophic cerebral edema and neurologic collapse
 - Incidence = Unknown, CDC estimates 1.5/year
 - Loss of autoregulation of CBF; vascular engorgement; increased ICP; brainstem herniation

JHS Post concussive syndrome

 Persistence of symptoms beyond the generally accepted timeframe for recovery (7-10 days SRC) = prolonged concussion or PCS

Broad definition:

- 3 or more of the following symptoms following a minor head injury
 - Headache, dizziness, fatigue, irritability, insomnia, concentration difficulty or memory difficulty
- 2 4 weeks International Classification of Diseases 10th Edition (ICD-10)
- **3 months** Diagnostic & Statistical Manual of Mental Disorders

Post-Concussive Syndrome

- Clinical Challenge
 - No clear physiologic explanation of the disorder
 - Prolonged symptoms
 - Concussion Pathophysiology
 - » OR
 - Manifestation of Secondary Process

How to Differentiate?

- Predictors not known with certainty
- Clinical Variables that increase risk:
 - Prior concussions
 - Female
 - Younger age
 - Hx of cognitive dysfunction & affective disorders depression, anxiety, migraines

Treating PCS

- Improve symptoms
 - Reassurance
 - Discussion of expected recovery time & compensatory strategies
- Comprehensive PT intervention for overlapping impairments
 - Grabowski et al
 - Multi-modal impairment based therapy is safe and effective for treating PCS

Multidisciplinary Team

Concussion Management:

- Athletic Trainers
- Physicians
- Physical Therapists
- Neuropsychologists
- (Neuro) Optometrists/ Ophthalmologists
- Vision Therapists
- Psychiatrists/ Psychologists
- Coaches
- Athletic Directors

Concussion Management

Athlete has been assessed on the sideline

Physician has evaluated and diagnosed concussion

Athlete referred to rehabilitation for concussion management and RTP

- Did not improve as expected in 10 day period
 - 15-20% of population

Sport Related Concussion – Systems Impacted

- Just a Brain Injury?
 - According to the Berlin Consensus Statement of 2016
 - "Sport related concussion is a traumatic brain injury induced by biomechanical forces."
 - Perhaps the brain is not the only thing that is attributing to the symptoms.

Not "Just a Brain Injury"

- Need to assess:
 - Cx Spine & Musculoskeletal System
 - Vestibular System
 - Oculomotor System
 - Sensorimotor Processing
 - Motor Coordination
 - Balance
 - Exertional / Autonomic Adaptation

More systems that are evaluated by other professionals

Evaluating the mTBI

Post Concussion Disorders (PCD's)

Classification System

Physiologic

Vestibulo-Ocular

Cervicogenic

mTBI Concussion

Post Traumatic Mood Disorders

Migraine

Symptom 'Clusters'

Physiologic	Vestibulo-ocular	Cervicogenic	
Headache exacerbated by physical and cognitive activity	Headache exacerbated by activities that worsen vestibulo-ocular symptoms (i.e. reading)	Occipital Headaches exacerbated by head movements and not physical or cognitive activity	
Nausea, intermittent vomiting	Nausea		
Photophobia, Phonophobia	Photophobia		
Fatigue			
Difficulty concentrating, slowed speech	Difficulty tracking objects, Blurred or double vision, motion sensitivity, eye strain or brow-ache		
	Impaired balance and gait testing	Postural imbalance, Lightheadedness	
		Neck pain, stiffness, decreased ROM	

Subjective Assessment

- What's going on? What brings you here today?
 - When
 - How
 - Treatment for this episode of care
 - Specialties, Medications, Imaging
 - Past Medical History
 - Past concussions #, length of recovery, tx required, any lasting deficits?
 - Migraines, anxiety, depression, learning disabilities, ADHD, motion sickness
 - Symptoms at time 0 & current
 - Headache, dizziness, neck pain, etc.
 - What makes the sx's better/worse?

Subjective

Current Level of Function

School / Work

- Any Modifications Needed?
 - Part time Full time
 - Lighting
 - Extra time
 - Noise control

Sleep/Cognition

- Sleep Hygiene
 - Physical / Cognitive breaks throughout day (No napping)
 - Activity prior to bed (screen time)
 - Medications
 - Neuro stimulants (Amantadine, methylphenidate, etc)
 - Sleep Aid

Mood

- Changes present?
- Effects of medication

UHS

UHS Subjective Outcome Measures

- Subjective Outcome Measures
 - DHI, ABC, NDI, HDI
 - SWAY
 - Post-Concussion Scale
 - Post-Concussion Symptom Scale
 - Rivermead Post-Concussion Symptom Questionnaire
 - SCAT 5 symptom inventory

- **Best Predictor of Concussion Improvement**
- Provides benchmarks for how the athlete is functioning post concussion
 - Assesses cognitive, physical, emotional and behavioral problems
- Problems with the Checklists
 - Various scales being used
 - Athletes/patients magnifying or under-reporting their symptoms

Objective Assessment

Physiologic
Vestibular / Ocular Motor
Cervical
Functional Testing

Rehab Evaluation

Exertional Testing- Physiologic PCD

- Treadmill Tests, Stationary Bike, Other
- Buffalo Concussion Treadmill Test (BCTT)
 - Safe and Reliable (Leddy et al Clin J Sport Med 2010, 2011)
 - Assessment of exercise tolerance post concussion
- Buffalo Concussion Bike Test (BCBT)
 - Reduces stress on the vestibular and cervical structures

Why Buffalo Concussion Testing?

- Differentiate between physiologic and other post concussion disorders (vestibular, cervicogenic, cognitive behavioral, etc.)
- To develop subthreshold aerobic exercise prescriptions
 - Identify readiness for athlete to begin graduated return to play program

Buffalo Concussion Testing

Prior to testing:

- Educate Athlete
 - ** "Do NOT push through symptoms"**
 - Rating of Perceived Exertion (RPE) scale
 - Likert symptom scale
- Test Results Form
- Take baseline measurements HR, RPE, VAS
- Testing NOT recommended if > 7/10 on Likert Symptom Scale

Concussion Symptom Reporting

- Rating of perceived exertion (Borg, RPE) and symptoms assessed every minute
 - RPE "how hard you feel like your body is working"
 - VAS "how good/bad your symptoms are making you feel right now"
- HR assessed every 1-2 minutes

Rating of Perceived Exertion Borg RPE Scale

6	Vana vana limba	How you feel when lying in bed
8	Very, very light	or sitting in a chare relaxed. Little or no effort
9	Very light	
10		
11	Fairly light	
12		Target range: How you should
13	Somewhat hard	feel with exercise or activity
14		
15	Hard	
16		
17	Very hard	How you felt with the hardest
18		work you have ever done.
19	Very, very hard	
20	Maximum exertion	Don't work this hard!

https://dahlc.mayoclinic.org/2014/08/01/rpe-explained/ Accessed on May 9, 2018

Buffalo Concussion Treadmill Test

- Treadmill
 - Start
 - 0% incline
 - 3.6 mph (can be altered- pt. height/ability)
 - Increase incline by 1% each minute starting at minute 2
 - If pt. reaches max incline and can still continue, increase
 .4 mph each min until stopping criteria attained
 - Report exertion, symptoms and HR

Stopping Criteria

- "significant exacerbation of symptoms"
 - ≥ 3 point change in symptoms on VAS
 - Report of exhaustion (RPE of 19-20)
- Objective signs noted by tester

Threshold = HR at symptom exacerbation

BCTT & BCBT as an Intervention

- Prescribing a sub-threshold exercise prescription
 - –"Exercise is Medicine"
 - 80-90% of achieved HR = Target HR
 - HR monitor is KFY!!
 - Want to prevent over-exertion
 - 20 min/day at target HR with 5 min warm-up and 5 min cool- down
 - Bike first then other aerobic activity 6-7 days/week
 - Increase target HR 5-10 bpm every 1-2 weeks
- Maximum exertion without symptoms = physiologically recovered

BCTT Example

Time (minutes) % incline	BORG RPE (6-20)	Sx's (0-10)	HR (bpm)
Baseline	6	2	80
1 min	7	2	
2 min/1%	8	3	90
3 min/ 2%	9	3	
4 min/ 3%	9	3	105
5 min/ 4%	11	4	
6 min/ 5%	12	4	115
7 min/6%	15	6	125

Threshold = 125 bpm

 $125 \times .8 = 100 \text{bpm}$

 $125 \times .85 = 106.3 \text{ bpm}$

 $125 \times .9 = 112.5 \text{ bpm}$

Exercise at 100 to 112 bpm for 20 min/day

Increase 5-10 bpm per week as tolerated

Buffalo Concussion Bike Test

BCBT

- Recumbent Stationary Bike
- BCBT power output conversion Excel spreadsheet
- Weight Scale
- Post the RPE and VAS scale

BCBT

- Enter Wt. of athlete into cell D2 on the conversion spreadsheet *
- Use column E as the setting for the power output at that min of exercise *
- Turn on Bike and adjust settings so that power output can be adjusted manually

*HR, RPE and Symptom Severity reported for baseline

Start Test

- Adjust bike to the stage 0 value (column E)
- Begin pedaling must stay at the workload
- Increase power output every minute
- Record every minute
 - RPE, VAS, HR, Observation

A	A	В	С	D	E
1	Stage (%grade)	VO2	METs	BW (KG)	Workload (Watts
2	0	13.1	3.74	100	50.02
3	1	14.83	4.24		64.206
4	2	16.56	4.73		78.392
5	3	18.28	5.22		92.496
6	4	20.01	5.72		106.682
7	5	21.74	6.21		120.868
8	6	23.47	6.71		135.054
9	7	25.2	7.2		149.24
10	8	26.92	7.69		163.344
11	9	28.67	8.19		177.694
12	10	30.38	8.68		191.716
13	11	32.12	9.17		205.984
14	12	33.85	9.67		220.17
15	13	35.56	10.16		234.192
16	14	37.92	10.65		253.544
17	15	39.03	11.15		262.646
18	100kg = 220.46lbs				

Stopping Criteria

- "significant exacerbation of symptoms"
 - ≥ 3 point change in symptoms on VAS
 - Report of exhaustion (RPE of 18-20)
- Objective signs noted by tester

Threshold = HR at symptom exacerbation

Rehab Evaluation

- Musculoskeletal Assessment- Cerviocogenic PCD
 - Assessing posture, Cx ROM, UE and scapular ROM, strength,
 biomechanics, kinesthetic awareness, TMJ, MM. tension/pain
 - Don't Forget the Neck!!
 - » Brain vs Strain? Which one is it?

Concussion Diagnosis Dilemma

http:www.cdc.gov/concussion/index.html

- Forces of concussion likely also cause injury to the vestibular and cervical spine structures!
- Linear impact accelerations:
 - Force of Concussion 60g to 160g Broglio et al, 2012
 - Force of Neck Sprain 4.5g Spitzer et al, 1995

Symptom List:

Concussion	Whiplash (WAD)
Headache	Neck pain/stiffness
Dizziness	> Dizziness
Photophobia/Phonophobia	Headaches
Balance deficits	Unsteadiness
Fatigue	> Fatigue
Mood changes	Concentration & Memory
Concentration & Memory deficits	PTSD

- Concussion Symptoms may be due to cervicogenic mechanisms
 - Pain Related
 - Headaches
 - Proprioceptive Related
 - Cervicogenic Dizziness
 - Oculomotor control deficits

Post Concussion Headache

- Poor cervical joint mobility (proximal)
- Decreased neck flexor mm. endurance
- Moderately tight neck mm.

Proprioceptive Related

- Dizziness, unsteadiness, visual disturbances, altered postural stability
- Impaired head-neck position sense
- Impaired neck movement control

Sensorimotor Control Deficits

Disturbance in Head-Neck Awareness

- Poor awareness of head-neck posture
- Joint Position Error (JPE)
 - Attach laser to head
 - Target distance = 90 cm from head rotation axis
 - Laser centered in Target move laser not head
 - Close eyes, move head, return head to target, open eyes
 - Can complete test in all head directions (flexion, extension, rotation, side bending)
 - Measure distance from center of target
 - Angle = tan-1 (error distance/ 90cm)
 - $\le 4.5^{\circ}$ JPE = 7.1 cm error distance = Normal, no impairment

Sensorimotor Control Deficits

Disturbance in Neck Movement Control

- Painful stiff neck, "head feels heavy", "Neck is tired"
- Assess quality of head movement
- Deep cervical flexor function (chin tucks)
- Cx extensor endurance (chin tuck AG, Tband)
- Laser on head and trace patterns on wall

Neck & Postural Control

- Neurophysiological connections exist between:
 - Cervical Spine Structures (especially upper cx region)
 - Vestibular System
 - Visual System
- Disruption to Cx afferents impacts:
 - Postural Stability
 - Eye and head movement control

Rehab Evaluation

❖ Vestibulo-ocular Assessment- Vestibulo-ocular PCD

* 50% of concussed athletes report dizziness

Kontos et al, 2012

* Dizziness is "associated with a 6.4-times greater risk, relative to any other on-field symptom, in predicting protracted (>21 days) recovery"*

Lau et al. 2011

- Rule out Central signs and symptoms
 - Spontaneous Nystagmus
 - Gaze Holding Nystagmus

Referral to specialist for further testing

- Rule in/out Positional Vertigo
 - Dix Hallpike Test / Roll Test
 - BPPV (Benign paroxysmal positional vertigo)
 - Most common cause of post-traumatic vertigo
 - More commonly bil than in idiopathic cases (25% v 2%)

Smooth Pursuit

Keep head still, move object in all planes, track with eyes

All Directions: vertical, horizontal, both diagonals

<u>Saccades</u>

- 2 objects, Move eyes not head

All Directions: vertical, horizontal, both diagonals

- Convergence
 - Provides depth information
 - Normal = ≤ 6cm from nose

- VOR vestibulo-ocular reflex
 - Move head, focus eyes on still target

- VOR₂
 - Move head opposite of target

- VOR Cancellation
 - Keep eye on target, move head and eyes in same direction

Rehab Evaluation

Further Objective Assessment

- Functional Testing
 - Balance / Postural Control BESS, SWAY
 - Coordination
 - Gait
 - Quality of Movement
 - Dual Tasking
- Cognition
 - SCAT 5

Functional Testing

Balance Testing

Romberg

Sharpened Romberg

Single Leg Stance

- Gait
 - Fwd, Bwd Head turns, nods Tandem VOR
- Dual Tasking

Let's not forget about....

- Other factors that may be impacting the pt.
 - Self-motivation
 - Personal coping styles
 - PMH
 - Social factors Teachers, Peers, Coaches
 - Family Dynamics Parents, Siblings
- Concussion is not a "tangible" injury
 - Unable to "see" the injury so some are unaware it exists – challenging for the pt.

UHS Exercise as a Treatment for Acute Sport – Related Concussion

- Rest is the most prescribed tx for SRC
 - Few days of rest is helpful (Thomas et al.,2015).
 - Prolonged rest ≥ 3 days is detrimental to recovery (Silverberg and Iverson, 2013).
- Currently there are no interventions that have been identified to speed recovery from SRC
 - Continued research BCTT, BCBT

Rest as an Intervention?

- Thomas et al 2015
 - Group 1: Usual Care
 - Rest 1-2 days
 - Step wise return to activity
 - Group 2: Strict Rest
 - 5 days strict rest at home (no school, no work, no physical activity)
 - Conclusion:
 - Strict Rest post 24 to 48 hrs. added no additional benefit
 - Strict rest influenced symptom reporting

Rest as an Intervention?

Grool et al 2016

- 2413 children between 5 & 18 years old
- Looked at Persistent post concussion symptoms (PPCS) at 28 days post concussion.
- 733 participants in the activity participation group
- 736 participants in the no activity group

- Conclusion:

- Early physical activity participants had lower risk of PPCS
 - 24.6% (activity) vs 43.5% (no activity)
- Need: A well designed RCT to determine benefit of early physical activity following concussion

Role of exercise to treat SRC

UB research

- Safe to assess exercise tolerance in first week of injury
- Early, controlled active intervention may safely speed recovery from SRC.

 Represents paradigm shift in SRC assessment and management- using an active approach instead of passive approach.

Leddy et al.

How **NOT** to break your Athletes!

- 1. Comprehensive Evaluation
- 2. Appropriate Treatment Plan
- 3. Refer to another discipline

4. EXERCISE!!!

- Monitor symptom exacerbation
- 5. Education

Take Home Points

- Use a multi-system approach to evaluate and treat the patient.
 - No GOLD Standard as every patient will present differently.
 - Many evaluation strategies available.
 - Screen all systems to assure best treatment and prognosis.
- Utilize a "team" approach to treating this population
- Evolving paradigm shift to activity vs. rest post concussion

EXERCISE is Medicine!

References

- 1. McCrory P, Meeuwisse W, Dvorak J, et al; Consensus statement on concussion in sport—the 5th international conference on concussion in sport held in Berlin, October 2016 Br J Sports Med Published Online First: 26 April 2017. doi: 10.1136/bjsports-2017-097699
- 2. Giza CC, DiFiori JP. Pathophysiology of Sports-Related Concussion An Update on Basic Science and Translational Research. Sports Health. 2011 Jan; 3(1): 46-51.
- 3. CDC Physicians Toolkit; Collins, Gioia et al 2006. http://dhhs.ne.gov/publichealth/ConcussionManage/Documents/ConcussionDefnPathophysiology.pdf Accessed on May 3, 2018.
- 4. Roberto Vagnozzi, Stefano Signoretti, Luciano Cristofori, et al; Assessment of metabolic brain damage and recovery following mild traumatic brain injury: a multicentre, proton magnetic resonance spectroscopic study in concussed patients, *Brain*, Volume 133, Issue 11, 1 November 2010, Pages 3232–3242, https://doi.org/10.1093/brain/awq200
- 5. Thomas DG, Apps JN, Hoffmann RG, McCrea M, Hammeke T. Benefits of Strict Rest After Acute Concussion: A Randomized Controlled Trial. Pediatrics. February 2015. www.pediatrics.org/cgi/doi/10.1542/peds.2014-0966 DOI: 10.1542/peds.2014-0966
- 6. Leddy JJ, Baker JG, Merchant A, Picano J, Gaile D, Matuszak J, Willer B. Brain or strain? Symptoms alone do not distinguish physiologic concussion from cervical/vestibular injury. Clin J Sport Med. 2015 May;25(3): 237-42. doi: 10.1097/JSM.00000000000128.
- 8. Leddy et al. Rehabilitation of concussion and post-concussion syndrome. Sports Health. 2012 4(2):147-154. DOI: 10.1177/1941738111433673
- 9. Leddy JJ, Kozlowski K, Donnelly JP, Pendergast DR, Epstein LH, Willer B. A Preliminary Study of Subsymptom Threshold Exercise Training for Refractory Post-Concussion Syndrome. Clinical Journal of Sport Medicine. 20(1):21-27, JAN 2010. DOI: 10.1097/JSM.0b013e3181c6c22c
- 10. Grool et al. Association Between Early Participation in Physical Activity Following Acute Concussion and Persistent Postconcussive Symptoms in Children and Adolescents. *JAMA*. 2016;316(23):2504-2514. doi:10.1001/jama.2016.17396
- 11. Grabowski et al. Multimodal impairment-based physical therapy for the treatment of patients with post-concussion syndrome: A retrospective analysis on safety and feasibility. Physical Therapy in Sport. 2017 http://dx.doi.org/10.1016/j.ptsp.2016.06.001
- 12. Silverberg ND, Iverson GL. Is Rest After Concussion "The Best Medicine?": Recommendations for Activity Resumption Following Concussion in Athletes, Civilians, and Military Service Members. Journal of Head Trauma Rehabilitation. 28(4):250–259, JUL 2013. DOI: 10.1097/HTR.0b013e31825ad658
- 13. Signoretti et al. The Pathophysiology of Concussion. Physical Medicine and Rehabilitation Journal . October 2011;11(3);1934-1482. DOI: 10.1016/j.pmrj.2011.07.018
- 14. Ellis et al. Physiological, vestibulo-ocular and cervicogenic post-concussion disorders: An evidence-based classification system with directions for treatment. Brain Inj, 2015; 29(2): 238–248 DOI: 10.3109/02699052.2014.965207
- 15. Conder RL, Conder AA. Sports-Related Concussions . N C Med J. 2015;76(2):89-95.
- 16. Iverson GL, et al. Predictors of clinical recovery from concussion: a systematic review. Br J Sports Med 2017;51:941–948. doi:10.1136/bjsports-2017-097729
- 17. Collins M, Lovell MR, Iverson GL, Ide T, Maroon J. Examining Concussion Rates and Return to Play in High School Football Players Wearing Newer Helmet Technology: A Three-Year Prospective Cohort Study. *Neurosurgery*, Volume 58, Issue 2, 1 February 2006, Pages 275–286, https://doi.org/10.1227/01.NEU.0000200441.92742.46
- 18. Facts for physicians. CDC. http://www.concussiontreatment.com/images/CDC Facts for Physicians booklet.pdf. Accessed on May 3,2018.
- 19. Kristjansson, E and Treleaven, J. Sensorimotor Function and Dizziness in Neck Pain: Implications for Assessment and Management. Journal of Orthopaedic & Sports Physical Therapy® May 2009; 39(5): 364-377. Downloaded from www.jospt.org at on May 9, 2018.
- 20. King NS, Crawford S, Wenden FJ, Moss NEG, Wade DT. (1995) The Rivermead Post Concussion Symptoms Questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. *J Neurol* 242:587-592.
- 21. Mucha et al. A Brief Vestibular/Ocular Motor Screening (VOMS) Assessment to Evaluate Concussions: Preliminary Findings. Am J Sports Med. 2014 Oct;42(10):2479-86. doi: 10.1177/0363546514543775. Epub 2014 Aug 8.
- 22. Kontos AP, Elbin RJ, Schatz P, et al. A revised factor structure for the Post-Concussion Symptom Scale: baseline and postconcussion factors. Am J Sports Med. 2012;40(10):2375–2384
- Lau BC, Kontos AP, Collins MW, Mucha A, Lovell MR. Which on-field signs/symptoms predict protracted recovery from sport-related concussion among high school football players? Am J Sports Med. 2011;39(11):2311–2318.
- 24. Gwendolen J, Falla D, Treleaven J, Hodges P, Vicenzino B. Retraining Cervical Joint Position Sense: The Effect of Two Exercise Regimes. Published online 1 December 2006 in Wiley InterScience (www.interscience.wiley.com). DOI 10:1002/jor.20220
- 25. Broglio SP, Surma T, Ashton-Miller JA. High school and collegiate football athlete concussions: A biomechanical review. Ann Biomed Eng 2011;40:37–46.
- 26. Spitzer WO, Skovron ML, Salmi LR, Cassidey JD, Duranceau J, Suissa S, et al. Scientific monograph of the Quebec Task Force on Whiplash-Associated Disorders: redefining whiplash and its management. Spine 1995;20:15–73S.
- 27. Marshall CM, Vernon H, Leddy JJ, Baldwin BA. The role of the cervical spine in post-concussion syndrome. Phys Sportsmed, 2015; Early Online: 1–11 DOI: 10.1080/00913847.2015.1064301
- 28. Treleaven J, Jull G, Sterling M. Dizziness and unsteadiness following whiplash injury: characteristic features and relationship with cervical joint position error. J Rehabil Med. January 2003;35(1):36-43

UHS

